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BACKGROUND:Historical accounts linking can-
cer andmicrobes date as early as fourmillennia
ago. After establishment of the germ theory of
infectious diseases, clinical research of micro-
bial influences on cancer began in 1868, when
WilliamBusch reported spontaneous tumor re-
gressions inpatientswithStreptococcuspyogenes
infections. Over the next century, poor reprodu-
cibility, erroneous microbiological claims, and
severe toxicity led many to discount the role
of bacteria in carcinogenesis and cancer ther-
apy. However, these studies provided the first
crude demonstrations of cancer immunother-
apy. Contemporaneously, the viral theory of can-
cer flourished, spurred by the 1911 discovery of
Rous sarcoma virus, which transformed benign
tissue into malignant tumors in chickens. The

decades-long search to find viruses behind every
human cancer ultimately failed, andmany can-
cers have been linked to somatic mutations.
Now the field is encountering intriguing claims
of the importance of microbes, including bacte-
ria and fungi, in cancer and cancer therapy.
This Review critically evaluates this evidence
in light of modern cancer biology and immu-
nology, delineating roles formicrobes in cancer
by examining advances in proposed mecha-
nisms, diagnostics, and modulation strategies.

ADVANCES: Few microbes directly cause can-
cer, but many seem complicit in its growth,
often acting through the host’s immune sys-
tem; conversely, several have immunostimu-
latory properties. Mechanistic analyses of gut

microbiota–immune system interactions reveal
powerful effects on antitumor immunity by
modulating primary and secondary lymphoid
tissue activities. Many of these pathways in-
voke Toll-like receptor–initiated cytokine sig-
naling, but microbial metabolic effects and
antigenic mimicry with cancer cells are also
important. In preclinical models, microbial
metabolites also regulate phenotypes of tumor
somatic mutations and modulate immune
checkpoint inhibitor efficacy.
Emerging evidence suggests that intratumoral

bacteria exist and are active, with overlapping
immunohistochemistry, immunofluorescence,
electron microscopy, and sequencing data in
~10 cancer types. Preliminary studies further
suggest that fungi and bacteriophages contrib-
ute to gastrointestinal cancers. However, the
abundance of intratumoral microbial cells is
low relative to cancer cells, and knowledge of
their functional repertoire and potency remains
limited. Further validation of their prevalence
and impact is needed in diverse cohorts and
therapeutic contexts.
The immunomodulatory effects of host mi-

crobiota have reinvigorated efforts to change
their composition as a formof immunotherapy.
Despite extensive preclinical evidence, transla-
tion ofmicrobiotamodulation approaches into
humans has not yet materialized into commer-
cialized therapies. Synthetic biology approaches
are also gaining traction, with engineered bac-
terial cancer therapies in preclinical and clin-
ical trial settings.

OUTLOOK: A better understanding of the roles
of microbes in cancer provides an opportunity
to improve each stage of the cancer care cycle,
but major challenges remain. Concerted efforts
to characterize cancer-associated microbiota
among tumor, stool, and blood samples with
gold-standard contamination controls would
tremendously aid this progress. This would
be analogous to The Cancer Genome Atlas’s
role in characterizing the cancer somatic mu-
tation landscape. Large-scale clinical trials
are currently testing the efficacy of micro-
biota modulation approaches, ranging from
dietary modifications to intratumorally in-
jected, engineered bacteria. These bacterial
cancer therapies, if safe and effective, could
tremendously expand the cancer therapy
armamentarium. Altogether, integrating the
host-centric and microbial viewpoints of
cancer may improve patient outcomes while
providing a nuanced understanding of cancer-
host-microbial evolution.▪
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Opportunities for microbes to affect cancer care. Diagnosis: Cancer-specific, blood-borne microbial DNA
may complement cell-free tumor DNA (ctDNA). Prognosis: Gut and intratumoral microbiota may stratify
patient outcomes (NR, nonresponder; R, responder; TME, tumor microenvironment). Therapy: Intratumor
injection of CD47 nanobody (CD47nb)–producing Escherichia coli may create systemic antitumor immunity
by enhancing dendritic cell (DC) phagocytosis, lymph node (LN) antigen (Ag) presentation, and cytotoxic
T lymphocyte (CTL) activity.
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Microbial roles in cancer formation, diagnosis, prognosis, and treatment have been disputed for
centuries. Recent studies have provocatively claimed that bacteria, viruses, and/or fungi are pervasive
among cancers, key actors in cancer immunotherapy, and engineerable to treat metastases. Despite
these findings, the number of microbes known to directly cause carcinogenesis remains small. Critically
evaluating and building frameworks for such evidence in light of modern cancer biology is an important
task. In this Review, we delineate between causal and complicit roles of microbes in cancer and
trace common themes of their influence through the host’s immune system, herein defined as the
immuno-oncology-microbiome axis. We further review evidence for intratumoral microbes and
approaches that manipulate the host’s gut or tumor microbiome while projecting the next phase of
experimental discovery.

T
he histories of cancer and human mi-
crobiota are intimately interwoven.Writ-
ings as early as 1550 BCE in the Ebers
Papyrus, attributed to the Egyptian phy-
sician Imhotep (around 2600 BCE), sug-

gest a crude treatment for tumors (swellings)
involving application of a poultice to the site
followed by an incision, causing an infection
(1, 2). In the 13th century, Peregrine Laziosi
described spontaneous regression of his septic,
ulcerative tibial bonemalignancy that would
have required amputation (2), for which he
was canonized in 1726. After establishment of
the germ theory of infectious disease, Wilhelm
Busch and Friedrich Fehleisen independently
reported in the late 1800s that Streptococcus
pyogenes infectionswere associatedwith spon-
taneous tumor regressions in several patients
(3, 4). Shortly thereafter, William Coley started
testing a highly contentious and sometimes
lethal vaccine of live or heat-killed Streptococcus
and Serratia species on terminal cancer pa-
tients, which was only later shown to yield
>10-year disease-free survival in ~30%of them

(60 of 210 total), representing the first inten-
tional demonstration of immunotherapy (5).
Contemporaneously, Thomas Glover and
Virginia Livingston-Wheeler claimed, con-
troversially, that bacteria were cultivable
from tumors and that bacterial vaccines were
effective against tumors, and suggested a
universal bacterial origin of cancer (6, 7).
These early treatment approaches and the-
ories were fraught with error: Livingston-
Wheeler’s bacterial “cause”of cancer,Progenitor
cryptocides, turned out to be the skin commen-
sal Staphylococcus epidermidis (a frequent
contaminant), and Glover’s findings were not
reproducible by researchers at the National
Institutes of Health (7). With no mechanistic
evidence, irreproducible results, and hazard-
ous therapies, the bacterial theory of cancer
was dismissed.
The viral theory of cancer gained traction

after Peyton Rous’s 1911 discovery of a trans-
missible oncogenic virus in chickens (8). The
subsequent decades-long search to find a virus
behind every cancer linked Epstein-Barr, hu-
man papilloma, and hepatitis viruses to car-
cinogenesis (9) but failed to find a viral cause
for most human cancers, and the theory was
overtaken by the somatic mutation hypothesis.
Now, after decades of research thoughtfully

characterizing the hallmarks of human cancer
through somatic mutations and other host-
centric perspectives (10, 11), the field is en-
countering nuanced claims that microbes
may play a broad role in cancer diagnosis,
pathogenesis, and treatment (12–26). This
reappraisal stems from greater appreciation
of the number of microbes that inhabit the
human body (roughly equal to the number of
human cells), their gene count that exceeds
the human genome’s gene count by ~100-fold
and enables diverse metabolic programming,
and their effects on host immune system de-

velopment and activity, including antitumor
immunosurveillance (27–31). Although most
proposed cancer-microbe relationships focus
on gut microbiota (30, 32, 33), recent studies
also contentiously suggest the existence, meta-
bolic activity, and functional importance of
intratumoral microbiota using a combination
of imaging, sequencing, and cultivation tech-
niques and genetically engineered and germ-
freemousemodels (12–14, 18–20, 23, 34). These
studies raise many questions about microbes
and cancer. How should microbes be viewed
in light of known host-centric cancer charac-
teristics? To what extent are microbes causal
agents, complicit actors, or passive bystanders?
If intratumoral microbes exist, do they have
therapeutic implications?What role domicrobes
play in patient management? With these
questions inmind, thisReviewaims to critically
evaluate the known roles ofmicrobes in cancer
and to outline the next steps for evaluating
their clinical utility.

Overview of the cancer microbiome

Of the estimated ~1012 distinct microbial spe-
cies on Earth (35), just 11 are labeled human
carcinogens, or “oncomicrobes,” by the Interna-
tional Association for Cancer Registries (IACR)
(36). These oncomicrobes cause an estimated
2.2 million cases per year (~13% of global can-
cer cases), and their epidemiology, molecular
mechanisms, and clinical studies have been
extensively reviewed (36). Strong experimen-
tal evidence suggests that additional microbes
initiate cancer through genotoxin-mediated
mutagenesis; in particular, colibactin (a DNA
alkylator), cytolethal distending toxin [CDT;
direct deoxyribonuclease (DNAse) activity],
and Bacteroides fragilis toxin (Bft; reactive
oxygen species (ROS) producer) cause muta-
tional signatures found in colorectal, head and
neck, and urinary tract cancers (22, 37–41).
Experimental evidence also implicates sev-
eral microbes with virulence factors that
amplify tumorigenesis through E-cadherin–
Wnt–b-catenin signaling, including FadA from
Fusobacterium nucleatum and AvrA from sev-
eral Salmonella strains (42, 43). A few dozen
microbial species can thus directly cause can-
cer, based on current epidemiological and ex-
perimental evidence.
Increasing evidence suggests an important

additional category of “complicit” microbes
and microbial functions that promote carci-
nogenesis but are insufficient to cause cancer
(18, 20, 25, 38, 44–47). This category encapsu-
lates many immunomodulatory functions of
microbiota and their bioactive metabolites in
tumor development and may be linked to the
immune system’s role in solid tumorigenesis;
the immune system rarely initiates the in-
cipient lesion but can facilitate progression
through tumor-stroma feedback loops, inflam-
mation, or dysfunctional immunosurveillance
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(11). One example is that common p53 muta-
tions are only carcinogenic in the presence
of microbially produced gallic acid and are
protective otherwise in the gut, both in vivo
and in organoids, suggesting a microbiome-
functional genomic interaction (44). A second
is microbially produced secondary bile acids,
which reduce hepatic sinusoidal CXCL16 ex-
pression (the sole ligand for CXCR6) and pre-
vent CXCR6+ natural killer T cell aggregation
and liver cancer immunosurveillance—this car-
cinogenic effect is eliminated by vancomycin
treatment (45). A third comes from the inability
of Kras mutation and p53 loss to produce lung
cancer in germ-free or antibiotic-treated mice:
Commensal lung microbiota promote expan-
sion and activation of gd T cells, which drives
tumor-promoting inflammation through local
interleukin-17 (IL-17) and IL-23 release (18).
These examples illustrate how microbes or
microbial functions can be complicit in cancer
rather than directly causal.
In contrast to the few bona fide oncomi-

crobes, themany complicit microbes and their
functions are broad and understudied. Com-
plicit microbes require mediators to promote
tumor development but modulate tumor pro-
gression and therapeutic efficacy locally or
from a distance. Complicit microbes are also
least understood, requiring comprehension
and integration of host and microbial biol-
ogy, so we emphasize them in this Review.
Together with known causal mechanisms, the
diversity of these “complicit”mechanisms and
their relationships to host-centric cancer hall-
marks (10, 11) are notable (Fig. 1), but they will
require more rigorous experimentation and
cross-cohort validation to establish clinical
prevalence and utility.
Understanding the distribution of microbes

across the body is important for understand-
ing their relationships to cancer. About 4 ×
1013 microbial cells spanning ~3 × 103 species
inhabit the human body: About 97% of these
cells are bacteria in the colon, ~2 to 3% are
extracolonic bacteria (proximal gut, skin, lungs,
etc.), and ~0.1 to 1% are archaea and eukarya
(including fungi) (27, 48). Human-infecting
virus and phage counts and diversity may be
greater (49). The high density of colonic bacte-
ria is thought to drive most of the known
microbial immunomodulatory effects in the
mammalian intestinal tract, the largest immune
organ in the body (50), but organ-specific
commensals may exert their own overriding
influence (18, 46). Intratumorally, Nejman et al.
used quantitative polymerase chain reaction
(qPCR) of 16S ribosomal RNA (rRNA) to esti-
mate the number of bacteria relative to 40 ng of
DNA inmelanoma, lung, ovarian, glioblastoma,
pancreatic, bone, and breast cancer tissue sec-
tions (12). Assuming tissue homogeneity and
8 pg of DNA per cancer cell (based on 2.36
average tumor ploidy from the Pan-Cancer

Analysis of Whole Genomes project) (51), the
Nejman et al. data suggest an average pan-
cancer percent bacteria composition at 0.68%
bacterial (bootstrapped 95% confidence inter-
val of mean: [0.52%, 0.87%], 1000 iterations),
with individual tumors ranging fromno bacte-
ria to nearly 70% bacterial by cell count (12).
Applying this percent bacterial composition
to three-dimensional and planar contexts
equates to ~105 to 106 bacteria per palpable
1-cm3 tumor (52) or ~34 bacteria/mm2 [assum-
ing 5000 cells/mm2 (53)], the latter of which is
comparable to the average PD1+ T lymphocyte
tumor core density of ~21 cells/mm2 from a
recent pan-cancer cohort (54). Importantly,
these bacterial composition estimates remain
to be confirmed in other cohorts and cancer
types and validated with orthogonal meth-
ods. Furthermore, which of these microbial

taxa and functions can affect the host despite
their low abundances remains unknown, as
does the proportion that are merely pas-
sengers in a nutrient-rich and immunosup-
pressed space.

Mechanisms and interactions between the gut
and tumor microbiome

Gut microbiota can regulate many functions
of the tumor-bearing meta-organism, typically
through immunomodulation, and putative
intratumoralmicrobesmay also be important
(31, 55). Known microbial mechanisms can
manipulate nonhematopoietic and hemato-
poietic components of the gut epithelial barrier,
modulate primary and secondary lymphoid
organ activities, and regulate immune tone
of the tumor microenvironment (TME). We
define these immune-mediated interactions

Sepich-Poore et al., Science 371, eabc4552 (2021) 26 March 2021 2 of 13

Fig. 1. Examples of the intersection of microbial mechanisms with cancer hallmarks. The cancer
hallmarks are described in (10, 11). Microbiota-derived metabolites, genotoxins, and antigens influence host
antitumor immunity, inflammation, energetics, cellular signaling, and metastasis. dsDNA, double-stranded
DNA; mAb, monoclonal antibody; MDSC, myeloid-derived suppressor cell; MMP, matrix metalloproteinase;
NKT cell, natural killer T cell; SCFAs, short-chain fatty acids.
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and collective feedback loops as the immuno-
oncology-microbiome (IOM) axis (Fig. 2).
Gut-TME cross-talk, especially in nongas-
trointestinal cancers, remains a key area of
discovery.

The effects of gut microbiota on primary
lymphoid organs

After allogeneic hematopoietic stem cell trans-
plantation (HSCT), robust immune reconstitu-
tion governs both relapse and transplant-related
patientmortality (56, 57). A recentmulticenter,
multinational clinical trial demonstrated that
higher diversity of intestinal microbiota is sig-
nificantly associated with lower patient mor-
tality after allogeneic HSCT (58). Moreover,
in an allogeneic HSCT trial that coanalyzed
daily changes in patient differential blood
counts with >10,000 longitudinal fecal sam-
ples, immune-reconstitution dynamics were
closely linked to gut microbiota composition

(59). Links between gut microbiota, nutrition,
post-transplant bone marrow (BM) and thy-
mic cellularity, and lympho- and myelopoiesis
have also been demonstrated inmousemodels
(57). Gut microbe depletion impairs systemic
infection clearance after BM transplant and
sensitizes mice to semilethal doses of radia-
tion. Microbiota-derived compounds can pro-
tect against irradiation-induced hematopoietic
injury (60–62) through production of propi-
onate and tryptophan metabolites (63) or by
releasing microorganism-associated molec-
ular patterns (MAMPs) known to maintain
BM-derivedmyeloid cells and neutrophil func-
tion (64, 65). This effect may be explained in
part by the delivery of endogenous ligands for
RIG-I (such as 3pRNA and RNA derived from
viruses, phages, or bacteria) that can induce
protective type I interferon (IFN-I) signaling
in enterocytes and intestinal barrier repair (66).
Post-transplant lymphopoiesis also depends

on energy harvest from the diet and poten-
tially on genera whose genomic repertoires
encode carbohydrate-active enzymes (57).

The effects of gut microbiota on
adaptive immunity

The gut microbiota has broad effects that con-
tribute to host immune tone at steady state
and during tumorigenesis (30, 67). Anticancer
therapies have demonstrated strong links be-
tween distinct commensals and protective anti-
tumor T cell responses: (i) Cyclophosphamide
enables Enterococcus hirae to translocate and
stimulate pathogenic helper T cell 17 (TH17)
responses and IFN-producing CD8+ T cell ef-
fectors that check tumor growth in sarcoma
and lung adenocarcinoma models (68, 69);
(ii) in some patients withmelanoma, cytotoxic
T lymphocyte–associated antigen 4 (CTLA-4)
blockade allows fecal relative enrichment of
Bacteroides thetaiotaomicron and B. fragilis

Sepich-Poore et al., Science 371, eabc4552 (2021) 26 March 2021 3 of 13

Fig. 2. Defining the IOM axis. Gut and TME microbiota regulate host metabolism
and immunity, which ultimately influence antitumor immunity. (A) Gut microbial
metabolites and by-products influence host lympho- and myelopoiesis, including
during allogeneic HSCT and radiotherapy (59, 63). (B) Cyclophosphamide (CTX)–
derived gut epithelial damage enables E. hirae translocation and antitumor immunity
(68, 69). (C) Gut translocation of Bifidobacterium species or its antigens can
increase IFN-I signaling and antitumor immunity (73, 76). (D) Microbes within the
TME can be either immunosuppressive (often PRR-mediated) or immunogenic,

including shaping the response to immunotherapy (12, 23). Cancer (neo)antigens
may share epitopes with microbes through molecular mimicry (73, 83). Microbial
hematogenous spread (117, 172, 173) or colonized micrometastases (19) may
complete this feedback loop that originated in the gut. CTL, cytotoxic T lymphocyte;
DC, dendritic cell; GALT, gut-associated lymphoid tissue; MAMPs, microbe-
associated molecular patterns; mLN, mesenteric lymph node; NK cell, natural killer
cell; OMVs, bacterial outer membrane vesicles; SCFAs, short-chain fatty acids;
TIL, tumor-infiltrating lymphocyte.
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thatmediates Toll-like receptor 4 (TLR4)– and
IL-12–dependent TH1 responses and therapeu-
tic efficacy (70); (iii) inhibition of programmed
cell death protein 1 and/or its ligand [PD-(L)1]
leads to T cell priming against melanoma
and is more effective when hosts harbor
Bifidobacteria species in their microbiome
(21, 71); (iv) adoptive T cell transfer efficacy
against melanoma after total body irradiation
depends on the composition of themicrobiota,
the translocation of gut bacteria, and host
TLR4 signaling (72–74); (v) oxaliplatin-induced
cell death of ileal enterocytes inversely gov-
erns the immunogenic Erysipelotrichaceae
and tolerogenic Fusobacteriaceae proportions
in the ileum, dictating the balance between
antitumor follicular T helper cells and delete-
rious TH17 responses in colon cancer (75).
Inmost of thesemodels, dendritic cells (DCs)

fromthegut-associated lymphoid tissue (GALT),
spleen, or tumor draining lymph node (LN)
sense various commensals (Bifidobacterium
spp., B. fragilis, Akkermansia muciniphila,
Bacteroides rodentium, Bacteroidales S24-7),
catalyzing immune responses through IFN-I–
and IL-12–mediatedpathways (17, 70–72, 75–77).
Apart from providing DC adjuvants, the gut
microbiota represent an antigen source that
can elicit commensal-specific T cell responses
systemically (55, 78). In the context of homol-
ogous self-antigens, these commensal-specific
immune responses can be deleterious or pro-
tective for the host, depending on the involved
peptide(s). For instance, Gil-Cruz and col-
leagues demonstrated howhomology between
B. thetaiotaomicron–derived b-galactosidase
and host cardiac myosin heavy chain 6 could
drive lethal autoimmune inflammatory cardio-
myopathy (79); conversely, Nanjundappa and
others reported how cross-reactivity between
Bacteroides species–derived integrase and host
islet-specific glucose-6-phosphatase catalytic
subunit-related protein (IGRP) could hijack
autoreactive CD8+ T cells to instead suppress
colitis (80). Recent studies have further ex-
panded this cross-reactive homolog list to
include exogenous dietary antigens, notably
between gliadin epitopes and gutPseudomonas
fluorescens–derived succinyl-glutamate desuc-
cinylase in the context ofHLA-DQ2.5–mediated
celiac disease (81). Molecular mimicry between
cancer and microbial antigens has also been
hinted (82) and recently studied in depth (83).
H-2Kb–restricted T cell immune responses
against a phage that infects distinct strains of
enterococci (E. hirae) cross-reacted with an
oncogenic driver (PSMB4). Oral administra-
tion of E. hirae strains containing this phage
then boosted phage-specific T cell responses
effective against extraintestinal tumors over-
expressing PSMB4 during therapy with cyclo-
phosphamide or anti–PD-1 antibodies (83).
Similarly, T cells targeting an epitope, SVYR-
YYGL (SVY), expressed in the commensal bac-

terium Bifidobacterium breve, cross-reacted
with a model neoantigen, SIYRYYGL (SIY),
expressed by mouse melanoma B16-SIY (73).
Moreover, some human T cells specific for
naturally processed melanoma epitopes were
found to recognizemicrobial peptides (83), sug-
gesting clinical importance. However, mecha-
nisms outside ofmolecularmimicry that boost
antitumor immunity must also exist. For ex-
ample, Tanoue and colleagues identified
an 11-bacteria cocktail that increased tumor
antigen–specific CD8+ IFN-g+ T cells in the
context of immune checkpoint blockade that
were not cross-reactive with microbial anti-
gens and did not originate from the colon (84).
Gut-derived metabolites can also modulate

immune responses. Radiotherapy of tumor
lesions was more effective when vancomycin
eliminated Clostridiales-derived immunosup-
pressivemetabolites (butyrate and propionate)
putatively by increasing DC antigen presen-
tation and concomitant CD8+ T cell priming
(72); conversely, gut microbial–derived pro-
pionate and tryptophan pathway metabolites
(1H-indole-3-carboxaldehyde, kynurenic acid)
were shown to provide long-term radiopro-
tection in vivo (63). High blood butyrate and
propionate levels were also associated with
resistance to CTLA-4 blockade in mice and
melanoma patients, with concomitantly in-
creased regulatory T cell (Treg) proportions,
reduced DC and effector T cell activation, and
lower responses to IL-2 (85), although they
were also found to be associated with longer
progression-free survival during anti–PD-1
treatment (86). Moreover, increased ex vivo
outgrowth of A.muciniphila by prebiotic mucin
decreased growth kinetics of aggressive mela-
noma inagutmicrobiota– andT cell–dependent
manner, reducing serum levels of proinflam-
matory and immunosuppressive IL-6, IL-1a,
IL-10, IL-17A, and IL-23 cytokines (87); notably,
prebiotic inulin operated through a different
mode of action, facilitating the dominance of
Bifidobacteria species in the intestines, boost-
ing splenic cytotoxic T lymphocyte functions,
and overcomingmelanoma resistance toMEK
inhibitors (87).

The effects of gut microbiota on the TME

The intestinal ecosystem can influence both
local and distant neoplasia by affecting their
immune context, influx ofmyeloid and lymph-
oid cells, and inflammatory and metabolic pat-
terns. Secretory components of gut microbiota
can be important: For example, outer mem-
brane vesicles (OMVs) can reprogram the TME
toward a pro-TH1 pattern (CXCL10, IFN-g) (88),
or metabolites, including butyrate and niacin,
can mediate Gpr109a-dependent induction
of IL-18 in colonic epithelium and suppress
colitis and colon cancer (89).
Tumor-associated, NOX2-mediated, myeloid

cell ROS production is reduced by antibiotic

administration or germ-free status, reducing
oxaliplatin’s capacity to mediate early tumor
genotoxicity (90). Similarly, commensalmicro-
biota primed tumor-associated innatemyeloid
cells for tumor necrosis factor–a (TNFa) (IL-1b,
IL-12, and Cxcl10) production in response to
anti–IL-10R/CpG-ODN treatment, and anti-
biotics, germ-free, or TLR4−/− status attenu-
ated this response and the TNF-dependent
early tumor necrosis (90). Supporting the
adjuvant role of commensals against develop-
ing cancers, pasteurized A. muciniphila or its
pili-like TLR2 agonist blunted azoxymethane-
induced colitis and colon carcinogenesis by
inducing TNFa-producing cytotoxic T lym-
phocytes in mesenteric lymph nodes (mLNs)
that eventually reached the colonic mucosa
(91). Spontaneous gut bacterial translocation
in Tet2−/− mice also drove preleukemic myelo-
proliferation (PMP), which leads to leukemia
if unchecked, in an IL-6–dependent manner
(47). PMP was reversible with antibiotics and
abolished in germ-free mice, suggesting new
clinical management opportunities. However,
an intact gut microbiome was later shown to
be necessary to prevent leukemia progression
in genetically predisposed mice (92).
Nonhematopoietic components of the intes-

tinal mucosa are also linked to the TME (77).
Gene-deficient mice and BM chimeras iden-
tified a role for RNF5, an E3 ubiquitin ligase,
in immunosurveillance of severe melanoma.
Rnf5−/− mice exhibited decreased secretion of
antimicrobial peptides and increased cell death
in the ileal crypts, causing changes in intesti-
nal microbiota community composition. This
bowel injury amplified mobilization of CCR7-
expressing DCs to Peyer’s patches, mLNs, and
melanoma-draining LNs, increasing IFN-g–
producing T lymphocyte tumor infiltration.
Confirming a Rnf5−/−-specific microbial effect,
cohousing Rnf5−/−mice with wild-type mice,
or administering antibiotics, restored tumor
aggressiveness, whereas oral gavage with 11
species overrepresented in Rnf5−/− animals
(Bacteroides and Parabacteroides spp.) into
germ-free wild-type mice recapitulated tumor
immunosurveillance (77). In another study,
oxaliplatin-induced caspase 3/7–dependent
ileal apoptosis of crypts coincidedwith immuno-
genic bacteria dominance in the ileal mucosa
(75). These commensals regulated follicular
T helper cell priming in mLNs, culminating in
B cell activation, immunoglobulin production,
and infiltration of colon cancers with tumor-
infiltrating lymphocytes (TILs) in mice and
patients. Anti–CTLA-4–induced gut barrier dys-
function was also critical for systemic trans-
location of Bifidobacterium-derived inosine, in
turn promoting TH1 activation and antitumor
immunity by agonizing T cell–specific adeno-
sine 2A receptor (A2AR) signaling in the con-
text of DC costimulation (93). These examples
illustrate that barrier injury is accompanied by
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a deviation of the local microbiome or trans-
location of microbial metabolites that, in turn,
mobilizes DCs to and outside the GALT and
contributes to tumor bed infiltration by acti-
vated helper or cytotoxic T cells.
The TME comprises not only stromal, tu-

mor, endothelial cells, and hematopoietic
progenitor–derived immune components but
also a dense network of adrenergic nerve fibers
that influence oncogenesis in brain and non-
brain cancers (94–97). Interestingly, enteric
nervous system neurons are both affected by
the gut microbiota and functionally tuned
according to their location in the gut. A subset
of microbiota-responsive neurons could influ-
ence metabolic control independent of the cen-
tral nervous system (98). These findings suggest
intimate relationships between mucosal or
tumoral commensals and tumor innervation
that need further study.

Gut microbiota–mediated effects on
anticancer drugs

Gut microbes are intimately involved in the
biotransformation of xenobiotics, including
cancer drugs, with unintended consequences
for clinical cancer control (99). For example,
in prostate cancer, abiraterone acetate (AA)was
used as an energy source by A. muciniphila
and inhibited Corynebacterium species relying
on AA-inhibited androgens for growth (100).
Because A. muciniphila is anti-inflammatory
and Corynebacterium species are proinflam-
matory, this change in their relative abun-
dances increased the pharmacologic efficacy
of AA therapy. A. muciniphila’s immunomo-
dulatory effects (78), including association
with responders during PD-1 blockade (17),
has prompted speculation that increased
A. muciniphila may explain the efficacy of
AA in androgen-independent prostate cancer
(100), although this remains to be tested in
large patient cohorts. These types of bidirec-
tional drug-microbiota feedback loops warrant
further study.

Intratumor microbiota effects on the TME

Mechanistic studies of live microbiota with-
in diverse tumor types have been limited,
particularly outside the aerodigestive tract,
but many of their effects on the TME ap-
pear to suppress local antitumor immunity
(15, 23, 34, 46, 75, 101, 102). Additionally, in-
tratumormicrobes have been reported to have
cancer-specific effects on (i) gastrointestinal
andurinary tractmutagenesis through secreted
genotoxins,most notably pks+ Escherichia coli–
derived colibactin and B. fragilis–derived toxin
(22, 37, 38, 40, 41); (ii) CagA-mediated or IL-17–
producing gd T cell–mediated inflammation in
stomach and lung cancers, respectively (18, 103);
(iii) chemoresistance through direct microbial
metabolism (cytidine deaminase degradation
of gemcitabine) in pancreatic cancer or indirect

amplification of cancer cell autophagy in colo-
rectal cancer (14, 104); (iv) tumor proliferation
through fungal activation of the host’s C3 com-
plement cascade in pancreatic cancer (20); and
(v) metastasis through up-regulation of tumor
matrix metalloproteinases in breast cancer or
reductionof tumor immunosurveillance in lung
cancer (34, 46). Immunologically, intratumor
microbes often create tolerogenic program-
ming through pattern recognition receptor
(PRR) ligation with lower proportions of TILs,
including CD8+ T cells, and occasionally more
CD4+CD25+FoxP3+ Tregs, as observed in colo-
rectal, pancreatic, breast, and lung cancers
(18, 23, 34, 46, 75, 101, 102). However, in cer-
tain cases, injection of intratumoral bacteria
or their antigens may conversely provide im-
munostimulatory effects, as demonstrated by
Coley’s toxins and recent developments in
bacterial cancer therapy (5, 105, 106). In breast
cancer, experiments comparing SCID-beige and
C57BL/6 mice with intratumor Fusobacterium
suggested lymphoid-lineage cells as key medi-
ators of intratumor microbiota-derived effects
on tumor immunosurveillance (34). There are
also associations between intratumor micro-
biota and immunogenicity, including differen-
tial melanoma immunotherapy response and
triple-negative breast cancer associations, but
their underlying mechanisms remain unchar-
acterized (12).

Extraintestinal barriers and
cancer microbiota

Given that the intestinal barrier offers the
largest host-microbial interface and greatest
microbial diversity, investigations on the po-
tential impact of the microbiota in onco-
genesis or cancer prognosis have primarily
focused on this barrier (107). These studies
could unveil cause-effect relationships between
gut microbial composition changes and com-
promised tumor immunosurveillance, even
in extraintestinal malignancies. However, it is
noteworthy that extraintestinal cancers can
develop within tissues that harbor their own
microbiome and may play a role in the ex-
acerbation of neoplasia (12, 18, 25, 46).
For instance, the lungs’ surface approximates

1 m2 per kg of body weight and is not sterile
(108). Experimental evidence in oncogene-
driven autochthonous lung cancer models in
mice unveiled that local commensals may be
perturbed by carcinogenesis, triggering an
inflammatory cross-talk between alveolar
macrophages and IL-17–producing lung resi-
dent gd T cells contributing to tumor pro-
gression (18). The clinical importance of this
observation has been recently brought up in
83 lung cancer patients (25). Tsay et al. high-
lighted that microaspiration of supraglottic
commensals in lung cancer patients can affect
response to therapies and overall survival,
owing to a TH17–mediated exacerbated in-

flammation corollary to immune checkpoint
inhibition (25).
Skin is also recognized as our largest and

outermost organ, maintaining host homeosta-
sis through tight interconnections between its
resident microbes, keratinocytes, and skin im-
mune components through metabolic, innate,
and cognate immune responses (109). Compo-
sitional shifts in the skin microbiota appear
to influence nonmelanoma skin carcinogen-
esis (110). Similarly, cervical cancer caused by
persistent high-risk human papillomavirus
infection is often associated with a deviated
cervical microflora (111, 112). The intertwined
and/or interkingdom relationships between
commensals and virus-associated cancers and
their synergistic effects on tumorigenesis
need further study, and exploration of cancer-
microbe interactions at other extraintestinal
barriers is warranted.

Cancer microbiome diagnostics

Variation in human microbiome composition
among body sites (113) contrasts with stable
human genetics that exhibit only minor vari-
ation resulting from somatic mosaicism and
clonal hematopoiesis (114). Because both host
tissues and microbiota are affected by carcino-
genesis, the genetic heterogeneity of microbes
may provide an opportunity to diagnose and
locate disease. For example, a blood-derived
TP53 mutation can indicate host cancer status
but implicates >25 cancer types (115); con-
versely, Streptococcus gallolyticus (formerly
S. bovis) bacteremia can reflect host cancer
status and type (colon cancer) based on its
gastrointestinal origin (116, 117). Many chal-
lenges exist for microbial-based diagnostics,
including low biomass relative to host and
confounding from reagent or environmental
contaminants. Many questions about their
specificity, prevalence, and stability during
cancer treatment or utility during antibiotic
administration remain to be answered and
must be addressed before clinical deployment.
Nearly all microbial-based cancer diagnos-

tics are sequencing-based and have focused
on tumors within the aerodigestive tract (31),
such as colorectal (118–121), pancreatic (122, 123),
and lung cancer (124–126). It was only recently
suggested that cancer types outside of the
aerodigestive tract, such as breast or brain
cancer, may also harbor microbiota with dis-
tinctive compositions. Nejman et al. (12) and
Poore et al. (13) suggest distinct intratumoral
microbiomes among >30 cancer types (Fig. 3),
proposing their applicability to blood-based
diagnostics and providing imaging evidence
of these microbes’ intratumoral spatial distri-
bution and intracellular localization in seven
cancer types, although imaging evidence re-
mains lacking for most cancer types.
Combining multiregion 16S rRNA ampli-

con sequencing, qPCR, immunohistochemistry
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Fig. 3. Current landscape of the cancer microbiome. (A) Body diagram of
all cancers currently linked to microbiota, where the colored dots reflect reference
numbers and are colored according to the major theme of the referenced
paper (diagnosis, mechanism, prognosis, or treatment). Dots are included based on
existing preclinical and clinical data. (B) Representative histology, immuno-
histochemistry (IHC) for lipopolysaccharide (LPS) and lipoteichoic acid (LTA),
and immunofluorescence (IF) for bacterial 16S rRNA in six cancers. H&E,

hematoxylin and eosin; GBM, glioblastoma. (C) Representative transmission
electron microscopy (TEM) images with overlaid 16S rRNA immunofluorescence
of intracellular bacteria (arrows) in breast cancer. (D) Estimation of tumor
percent bacterial composition across seven cancer types, assuming tissue
homogeneity and 8 pg of DNA per cancer cell. Black lines depict distributional
quantiles (25%-50%-75%); white dots reflect averages. Images in (B) to (D) are
adapted from Nejman et al. (12).
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[lipopolysaccharide (LPS), lipoteichoic acid
(LTA)], immunofluorescence (16S rRNA), culti-
vation, and electronmicroscopy, Nejman et al.
(12) surveyed 1010 tumors for bacteria across
melanoma, lung, ovarian, glioblastoma, pan-
creas, bone, and breast cancers. They included
811 experimental controls, covering DNA ex-
traction, PCR amplification, and paraffin em-
bedding, which identified and removed 94.3%
of bacteria as contaminants. Examining the re-
sidual 528 bacterial species revealed substan-
tial differences in composition, diversity, and
inferredmetabolic functionality between cancer
types. Histologic imaging revealed heteroge-
neous microbial spatial distributions (Fig. 3B)
and their frequent intracellular localization in
cancer and immune cells (Fig. 3C). As described
above in the “Overview of the cancer micro-
biome” section, qPCR estimated the number
of bacteria per tissue section, which we have
graphically depicted as percent bacterial com-
position per cancer type, assuming tissue
homogeneity and 8 pg of DNA per cancer cell
(Fig. 3D). Applying their pipeline to a mela-
noma immunotherapy cohort suggested mi-
crobiome differences between responders and
nonresponders, but not yet a mechanism. Be-
cause bacteria were cultured from only five
human breast tumors, the widespread viability
of intratumoral bacteria from this study was
unclear, particularly in cancers with report-
edly fewer bacteria. However, other studies
have indeed shown cultivable bacteria in breast
(127–129), lung (18), prostate (130, 131), pancreas
(14, 15), and colon cancers (19, 132), suggesting
broad microbial viability. Still, basic questions
remain about the functional impacts of these
intratumoral microbiota and whether they are
parasitic, symbiotic, or passive passengers, and
a biopsy specimen is required for analysis, lim-
iting its diagnostic utility.
Poore et al. (13) took a different approach by

harvesting all treatment-naïve whole-genome
and transcriptome studies from The Cancer
Genome Atlas (TCGA) (n = 18,116 samples;
33 cancer types) to study bacterial, viral, and
archaeal nucleic acids. Because no experimen-
tal controls were available, they filtered out
historically known reagent contaminants and
inferred other contaminants using per-sample
DNA and RNA concentrations; these steps re-
moved up to 91.3% of microbial taxa. Machine
learning revealed intratumor, cancer-specific
microbial signatures. Because colon cancer is
epidemiologically linked to clinical bacteremia
(116, 117), they explored TCGA blood-derived
normal samples (n = 1866 samples) for cancer-
specific microbial DNA and reported highly
accurate cancer discrimination. They validated
this blood-based diagnostic approach by com-
paring plasma-derived cell-freemicrobial DNA
from 100 patients with lung, prostate, or mela-
noma cancers to those from 69 HIV-negative,
healthy patients while implementing neces-

sary experimental contamination controls.
Although closer to a practical diagnostic ap-
proach, the absence of experimental controls
in TCGA, sole reliance on deep sequencing
data without orthogonal approaches, and cur-
rent lack of explainablemechanism(s) bywhich
microbial DNA enters into and survives circu-
lation limits these findings. We speculate that
the intracellular bacteria in cancer and im-
mune cells identified byNejman et al. (12)may
provide one source, though this remains to be
demonstrated. A rigorous evaluation along-
side blood samples from patients with non-
lethal bodily infections, septic patients, and

patients receiving antibiotics during cancer
care are necessary preconditions to broad clin-
ical utility.

Modulation of the cancer microbiome

The associations between certain gastrointes-
tinal microbiota and the activity of systemic
lymphoid tissues have stimulated interest in
microbial modulation as a powerful immuno-
therapeutic modality. If intratumoral micro-
biota are eventually verified to be prevalent
and immunologically active across most pa-
tients, as preliminary data suggest (12, 13),
such interventions must account for microbial
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Fig. 4. Considerations when modulating the endogenous cancer microbiome. Diet, medications, and
prebiotics, postbiotics, probiotics, and antibiotics all have the capacity to modify the gut and tumor
microbiomes. Bidirectional influences may exist between these microbiomes and cancer therapies
(chemotherapy and immunotherapy). For instance, chemotherapy can cause compositional changes in the
gut microbiome, which in turn enhance treatment efficacy (75); in other cases, chemotherapy may be
degraded by microbes (14). Thus, modification of the gut and/or tumor microbiomes may be advantageous
for one modality of therapy while disadvantageous for another. Dotted arrows denote gaps in the literature.
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niches and their cross-talk (Fig. 4). These dy-
namics sometimes appear related; for exam-
ple, modulation of gut microbiota influences
the composition of the intratumoral micro-
biome inpancreatic cancer, presumably through
pancreatic duct communication (15, 20, 23).
However, in other cases, these changes are
incongruent; for instance, antibiotics appear
to abrogate immunotherapy response by in-
hibiting the gut microbiome (133), but para-
doxically they improve immunotherapy efficacy
by upregulating PD-1 expression when elimi-
nating the pancreatic intratumoral micro-
biome (23). These complexities necessitate
more in-depth mechanistic studies of modu-
lation approaches and better clinical under-
standing before applying prebiotics, probiotics,
postbiotics, and antibiotics in the setting of
cancer.

Antibiotics and the cancer microbiome

The use of antimicrobial therapy in cancer is
limited to addressing or preventing known
microbial carcinogens. This includes treating
Helicobacter pylori–derived gastric lymphomas
with triple or quadruple antibiotic therapy,
administering direct-acting antivirals against
active hepatitis C virus, and vaccinating against
major human papillomavirus serotypes and
hepatitis B virus to prevent urogenital, cervical,
head and neck, and liver cancers (36, 134, 135).
Excluding antibiotic-derived chemotherapies
(e.g., doxorubicin), there is circumstantial and
conflicting evidence for the use of antibiotics
in solid tumors. Several studies in lung, colon,
and pancreatic cancer suggest that eliminat-
ing intratumoral microbiota can check tumor-
promoting inflammatory processes, reduce
cellular proliferation, or convert a tolerogenic
TME to an immunogenic one (18, 19, 23, 46).
However, increasing clinical evidence sug-
gests that systemic antibiotics abolish immune
checkpoint blockade efficacy and decrease
patient survival (133, 136, 137). In hematologic
malignancies, preclinical evidence suggests
a careful balance, where either antibiotics or
gut bacterial translocation can trigger leu-
kemic progression in genetically predisposed
hosts (47, 92).
Prebiotics, postbiotics, and dietary interven-

tions tomodify themicrobiome are also prom-
ising. Dietary effects on cancer were recently
reviewed in detail, with many epidemiological
associations but few causal mechanisms (138).
Difficulties in dietary data collection have im-
peded strong conclusions, but metabolomic
data that can reveal dietary intake and con-
comitant small-molecule effectors may help in
the future. Prebiotics (molecules that promote
growth of beneficial microbes) such as resist-
ant starch, inulin, and mucin are promising
in preclinical models, improving antitumor
immunity and therapy response in melanoma
and colon cancer (87), and are in clinical trials

(e.g., NCT03870607, NCT03950635). Experi-
mental evidence of postbiotic compounds
(microbial-derived molecules) is limited in
cancer, but they may provide advantages
through defined composition and manufac-
turing reproducibility (139).
Gut microbiota can also be modulated in

cancer through fecal microbiota transplanta-
tion (FMT), administration of definedmicrobial
consortia, and commercial probiotics. FMT
treats Clostridium difficile (now Clostridioides
difficile) colitis effectively (140), with some
efficacy in the treatment of immunotherapy-
associated colitis (141). The long-term efficacy

and stability of FMT remain unknown (142).
Targeting gutmicrobes clinically is complicated
by factors such as antibiotic preconditioning,
administration route, frequency of modulation,
and dietary recommendations (142). Ongoing
clinical trials suggest that FMT from donors
responsive to immunotherapy may enhance
antitumor immune and potentially clinical
responses [NCT03353402 (143)]. Additional
clinical trials are evaluating the impact of
transferring microbial consortia, ranging in
complexity frommonoclonal bacterial strains
to multiplexed consortia. Few commercially
available probiotic formulations have been
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Fig. 5. Synthetic biology for exogenous cancer therapeutics. (A) Regulatory considerations for engineering
bacteria against cancer (151). (B) Diverse sources of intratumoral bacteria include organ-specific commensals
(18, 19, 25, 46, 112), gut communication (15, 20, 23), hematogenous spread (172, 173), and intrametastatic
spread (19). (C) Some probiotics, such as E. coli Nissle 1917, possess strong safety records (174), have been
shown to naturally migrate to solid tumors in animal models, and can be programmed to produce and deliver
therapies from within solid tumors (155). (D) Complex population dynamics can be engineered to generate
the cyclical delivery of therapeutics (155, 156, 175). (E) Future efforts will likely center on engineering and
testing strains that are found naturally in patient-specific tumors. PDX, patient-derived xenograft. (F) Engineered
ecologies can be designed to create tailored, tumor-specific therapeutic cocktails (176, 177). (G) Multiple drug
payloads can be encoded by one or more engineered strains against tumors.
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tested for impacts on antitumor and systemic
immunity, with certain formulations actually
increasing tumorigenesis (144). In critically ill
patients, commercial probiotic use may even
cause bacteremia (145). Therefore, indiscrimi-
nate administration of commercially avail-
able probiotics in cancer patients should be
discouraged.

Cancer therapy using exogenous microbiota

Major strides have been made toward engi-
neering exogenous bacterial and viral agents
for cancer therapy, particularly as powerful
immunotherapy options or neoadjuvants.
Two such agents have U.S. Food and Drug
Administration approval: oncolytic viral ther-
apy for advanced melanoma using talimogene
laherparepvec (T-VEC) (146) and bacterial
cancer therapy for high-risk, nonmuscle in-
vasive bladder cancer using live-attenuated
Mycobacterium bovis (BCG vaccine) (147). Be-
cause oncolytic viruses are noncommensals
and have been reviewed elsewhere in detail
(148–150), we focus our attention on bacterial
cancer therapies (BCTs). Though historically
contentious, BCT is regaining attention through
synthetic biology techniques that programmat-
ically limit systemic toxicities while enhancing
regional antitumor immunity (105, 106). Reg-
ulatory challenges for BCT agents are consid-
erable (Fig. 5A), and despite ongoing clinical
trials (e.g., NCT04167137), they have yet to be
commercially surmounted (151).

Engineered microbes as cancer drugs

Natural bacterial mechanisms for tumor tro-
pism are numerous (Fig. 5B), with intratumoral
or intravenous injection often leading to
~10,000-fold accumulation in tumors rela-
tive to matched liver, spleen, and lung tissues
(152, 153). This affinity for tumor tissue provides
a creative drug chassis and natural bridge from
synthetic biology to cancer therapies, where-
by cytotoxic payloads can be encoded for
programmed delivery by tumor-homing bacte-
ria (Figs. 5, C to G). Thus far, genetically
attenuated, auxotrophic, and inducible ver-
sions of Escherichia, Bifidobacterium, Listeria,
Shigella, Clostridium, Lactococcus, Vibrio, and
Salmonella species have been engineered and
have shown antitumor efficacy in preclinical
models with intravenous, intratumor, and oral
delivery routes (147). Although someapproaches
are based on intracellular delivery of drugs
through phagocytic uptake of bacteria, others
program bacteria to act as “intratumoral bio-
reactors” that continuously produce and release
payloads extracellularly as part of colonization.
An interesting general approach implements
engineered bacterial lysis, which enables anti-
tumor protein production or release only when
a predefined population density of bacteria is
reached (154–157). This dramatically reduces
bacterial colony size and prevents systemic

toxicities. Din and colleagues were the first to
demonstrate how nonpathogenic E. coli and
Salmonella could be engineered to lyse at a
threshold population density, releasing a che-
mokine, hemolysin, or pro-apoptotic protein,
or all three, into the TME at desired periodic
intervals (155). The drugs are delivered cycli-
cally as the bacterial population is programmed
to generate growth-death-regrowth cycles.
Chowdhury et al. then used this design to
produce and release an antibody-fragment
nanobody against CD47, which tumors can
overexpress to inhibit DC phagocytosis (156).
Intriguingly, this stimulated a tumor antigen–
specific CD8+ T cell response that prevented
metastasis and mediated an abscopal effect,
which regressed distal noninjected tumors
as well. This approach further precluded host
anemias and thrombocytopenias that are
usually seen with systemic CD47 antagonism,
suggesting a clinical opportunity. If intra-
tumoral bacteria prove to be prevalent across
various cancer types, lysis circuit designs may
also provide an opportunity to flexibly engi-
neer patient-specific, tumor-specific commensal
strains (Fig. 5E) or several strains in feedback
with each other (Fig. 5F) to regulate payload
release. Given the many encodable cytotoxic
payloads (Figs. 5G), a clear demonstration of
BCT clinical efficacy with minimal systemic
toxicities could considerably increase the can-
cer therapy armamentarium.

Outlook for the cancer microbiome

The past 15 years of microbiome research pro-
vide intriguing, though still controversial, evi-
dence of the relationships between microbes
and cancer and the nuances of these relation-
ships. Few microbes directly cause cancer,
but many more seem complicit, and, perhaps

counterintuitively, several promote host anti-
tumor immunity. This complexity may reflect
shared evolutionary dynamics between the
host’s immune system, its commensal micro-
biota, and tumorigenic processes that we are
just beginning to uncover (158–160).
A substantial literature gap still separates

clinical observations and clinical interventions
targeted at microbiota in cancer. Although gut
microbiota modulation in murine immuno-
therapy models provides tantalizing results,
they have not yet translated to commercial
therapeutic interventions in humans. More-
over, observations in humans and mice of gut
microbes that stratify therapy response, par-
ticularly immunotherapy (16, 17, 21, 26), have
not uncommonly shown varying taxonomic
differences that persist despite uniform bio-
informatic reanalyses, although there is greater
concordance when examining functional pro-
files (161, 162). Thus, many of the key problems
that plagued researchers in the early 20th
century—contamination, irreproducibility,
patient toxicities—remain challenges today
for microbially based cancer diagnostics, prog-
nostics, and exogenousmicrobial therapeutics.
Additional cohorts with carefully curated sam-
ples to limit and mitigate potential contam-
ination are needed to help characterize and
understand the impact of intratumoral mi-
crobes on carcinogenesis, cancer progres-
sion, and therapy response. Other efforts are
needed to examine nonbacterial relationships
with cancer, gastrointestinally and intratumor-
ally, and their functions, particularly in relation-
ship with known bacterial functions. Further
consortium-level efforts are necessary to assess
the quantitative impact of technical variables
(e.g., DNA extraction, sample handling, bio-
informatic protocols) on cancer microbiome
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Fig. 6. Study design for characterizing cancer-associated microbiota and their functional impacts.
Opportunities exist to perform large-scale identification of the presence and function of cancer-associated
microbiota, beginning with longitudinal cohorts and multiregion sampling. Existing tools can be used to gather
multi-omic information on host immune cells, cancer cells, microbiota, and metabolites (51, 178, 179). In vitro
and in vivo disease models of a patient’s tumor and intestine can then be used to verify or rebut the predicted
functional impact and mechanism(s) of a given microbe (or its metabolites) and its causality in carcinogenesis
(160, 171). MALDI-TOF, matrix-assisted laser desorption ionization–time-of-flight mass spectrometry.
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data and guide the selection of “gold-standard”
pipelines, analogous to theMicrobiomeQuality
Control consortium’s analysis of fecal amplicon
sequencing among 15 laboratories and nine
bioinformatic protocols (163).
Many of these challenges would be aided

by amulticenter, longitudinal, concerted effort
to study microbiota in cancer, analogous to
TCGA’s role in elucidating the somaticmutation
landscape, with joint tumor, blood, and stool
collection; multi-omic data generation; and in-
corporationof experimental contamination con-
trols (Fig. 6) (164). Concurrent meta-analyses
of existent cancer datasets with uniform in
silico host depletion, decontamination, tax-
onomy calling, and functional profiling may
be able to identify global microbial drivers in
cancer pathogenesis and treatment despite
technical variation between individual studies
(13, 118, 119, 165–167). Completion of micro-
biotamodulation trials are additionally crucial
for guiding clinical applications and increas-
ing the cancer therapy armamentarium (142),
with new evidence demonstrating that mod-
ulation of the gut microbiota using FMT in
immunotherapy-refractory melanoma pa-
tients is associated with clinical responses
and changes in the gut and tumor immune
microenvironment (143, 168). In-depth func-
tional analyses at community and per-microbe
scales are likely necessary to elucidatemicrobial-
immune-cancer cell mechanistic interactions,
and emerging spatial multi-omic tools may
prove invaluable here (169, 170). Engineered
organoids with immune andmicrobiota niches
or metabolites may further help validate or
refute microbial causality or complicity in
carcinogenesis, as recently demonstrated by
colibactin mutagenesis studies (22, 171). Al-
though many challenges remain, building a
better understanding of the roles of microbes
in cancer may enable a powerful new toolkit
for improving patient care.
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